Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433333

RESUMO

Zooplankton community composition of northern lakes is changing due to the interactive effects of climate change and recovery from acidification, yet limited data are available to assess these changes combined. Here, we built a database using archives of temperature, water chemistry and zooplankton data from 60 Scandinavian lakes that represent broad spatial and temporal gradients in key parameters: temperature, calcium (Ca), total phosphorus (TP), total organic carbon (TOC), and pH. Using machine learning techniques, we found that Ca was the most important determinant of the relative abundance of all zooplankton groups studied, while pH was second, and TOC third in importance. Further, we found that Ca is declining in almost all lakes, and we detected a critical Ca threshold in lake water of 1.3 mg L-1 , below which the relative abundance of zooplankton shifts toward dominance of Holopedium gibberum and small cladocerans at the expense of Daphnia and copepods. Our findings suggest that low Ca concentrations may shape zooplankton communities, and that current trajectories of Ca decline could promote widespread changes in pelagic food webs as zooplankton are important trophic links from phytoplankton to fish and different zooplankton species play different roles in this context.


Assuntos
Cálcio , Cladóceros , Animais , Lagos , Zooplâncton , Água
2.
Sci Total Environ ; 927: 171959, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537816

RESUMO

Browning of freshwaters, mainly caused by increased terrestrial organic carbon loading, has been widely studied during the last decades. However, there are still uncertainties regarding both the extent of browning in different aquatic ecosystems and the actual importance of different driving forces and mechanisms. To refine understanding of the extent and causes of browning and its temporal variation, we gathered a comprehensive dataset including 746 Finnish water quality monitoring stations representing various waterbody types: streams, rivers, lakes, and coastal waters. Monotonic trend analyses revealed that TOC concentrations increased in all waterbody types during the study period from 1990 to 2020, whereas non-linear trends indicated that upward trends in TOC concentrations have substantially decreased since the mid-2000s. However, despite the upward trends levelling off, non-linear analyses also indicated decreases in TOC concentrations at only a few stations. As a result, the TOC contents of the majority of Finnish waterbody types in 2020 were at a higher level than in 1990. To examine the driving forces of increasing TOC concentrations, we selected 100 riverine catchments and linked the detected trends to 24 different drivers, including both hydrometeorological and catchment characteristics. The increased TOC concentrations in surface waters could be connected to diverse human impacts: hydrometeorological variables impacted by climate change, decreased acidic deposition, and land use in terms of peatland drainage. The importance of increased temperatures was emphasized, and its role as a driver of increased leaching of organic carbon in the forthcoming years is expected to grow with climate change.

3.
Ambio ; 52(11): 1697-1715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679659

RESUMO

We present regionally aggregated emissions of greenhouse gases (GHG) from five land cover categories in Finland: artificial surfaces, arable land, forest, waterbodies, and wetlands. Carbon (C) sequestration to managed forests and unmanaged wetlands was also assessed. Models FRES and ALas were applied for emissions (CO2, CH4, N2O) from artificial surfaces and agriculture, and PREBAS for forest growth and C balance. Empirical emission coefficients were used to estimate emissions from drained forested peatland (CH4, N2O), cropland (CO2), waterbodies (CH4, CO2), peat production sites and undrained mires (CH4, CO2, N2O). We calculated gross emissions of 147.2 ± 6.8 TgCO2eq yr-1 for 18 administrative units covering mainland Finland, using data representative of the period 2017-2025. Emissions from energy production, industrial processes, road traffic and other sources in artificial surfaces amounted to 45.7 ± 2.0 TgCO2eq yr-1. The loss of C in forest harvesting was the largest emission source in the LULUCF sector, in total 59.8 ± 3.3 TgCO2eq yr-1. Emissions from domestic livestock production, field cultivation and organic soils added up to 12.2 ± 3.5 TgCO2eq yr-1 from arable land. Rivers and lakes (13.4 ± 1.9 TgCO2eq yr-1) as well as undrained mires and peat production sites (14.7 ± 1.8 TgCO2eq yr-1) increased the total GHG fluxes. The C sequestration from the atmosphere was 93.2 ± 13.7 TgCO2eq yr-1. with the main sink in forest on mineral soil (79.9 ± 12.2 TgCO2eq yr-1). All sinks compensated 63% of total emissions and thus the net emissions were 53.9 ± 15.3 TgCO2eq yr-1, or a net GHG flux per capita of 9.8 MgCO2eq yr-1.

4.
Sci Total Environ ; 903: 166086, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37558072

RESUMO

Anaerobic terminal electron acceptors (aTEAs, i.e. NO3, Fe, SO4) enable anaerobic respiration, and each has a specific ability to oxidize reduced compounds. However, little is known about how seasonal and lake-specific aTEA fluxes form anaerobic oxidation capacity (AOC) to oxidize organic carbon in boreal systems. We compiled 26 years of data from two interconnected semi-pristine boreal lakes and defined mean daily imports, pools, and exports of aTEAs. In both lakes, the export of NO3 formed 2 %-3 % of the total AOC in summer and autumn, and up to 11 % in winter and spring. In a predominantly monomictic humic lake surrounded by peatlands, Fe was responsible for 15 %-31 % of the seasonal export of AOC, with a large proportion of Fe originating from the lake bottom. A dimictic clear-water lake downstream retained Fe and exported 87 %-95 % of AOC as SO4. In the humic lake, the annual SO4:Fe:NO3 export ratio for AOC was 10:3:1 and in the clear-water lake 15:0.4:1. In the monomictic lake, exports were specifically regulated by stratification; in the dimictic lake, exports were more regulated by spring flooding and the ascending and descending side of the peak flood. These events modified lake dynamics and caused lake-specific NO3, Fe, and SO4 exports which continued for months. We conclude that a catchment and lake network can cause spatial and temporal variation in exports of NO3, Fe, and SO4 affecting AOC export. Such natural variations in exports have significant potential to modify the system's capacity to oxidize C and resist changes in oxidation-reduction reactions coupled to nutrient cycling and the formation of greenhouse gases in downstream water bodies.

5.
Glob Chang Biol ; 28(1): 98-114, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706120

RESUMO

Dissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC. Here, we present long-term DOC and DON data from 74 streams distributed across seven sites in biomes ranging from the tropics to northern boreal forests with varying histories of atmospheric acid deposition. For each stream, we examined the temporal trends of DOC and DON concentrations and DOC:DON molar ratios. While some sites displayed consistent positive or negative trends in stream DOC and DON concentrations, changes in direction or magnitude were inconsistent at regional or local scales. DON trends did not always track those of DOC, though DOC:DON ratios increased over time for ~30% of streams. Our results indicate that the dissolved organic matter (DOM) pool is experiencing fundamental changes due to the recovery from atmospheric acid deposition. Changes in DOC:DON stoichiometry point to a shifting energy-nutrient balance in many aquatic ecosystems. Sustained changes in the character of DOM can have major implications for stream metabolism, biogeochemical processes, food webs, and drinking water quality (including disinfection by-products). Understanding regional and global variation in DOC and DON concentrations is important for developing realistic models and watershed management protocols to effectively target mitigation efforts aimed at bringing DOM flux and nutrient enrichment under control.


Assuntos
Matéria Orgânica Dissolvida , Rios , Carbono , Ecossistema , Nitrogênio/análise
6.
Sci Total Environ ; 781: 146668, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33794457

RESUMO

Climate change mitigation is a global response that requires actions at the local level. Quantifying local sources and sinks of greenhouse gases (GHG) facilitate evaluating mitigation options. We present an approach to collate spatially explicit estimated fluxes of GHGs (carbon dioxide, methane and nitrous oxide) for main land use sectors in the landscape, to aggregate, and to calculate the net emissions of an entire region. Our procedure was developed and tested in a large river basin in Finland, providing information from intensively studied eLTER research sites. To evaluate the full GHG balance, fluxes from natural ecosystems (lakes, rivers, and undrained mires) were included together with fluxes from anthropogenic activities, agriculture and forestry. We quantified the fluxes based on calculations with an anthropogenic emissions model (FRES) and a forest growth and carbon balance model (PREBAS), as well as on emission coefficients from the literature regarding emissions from lakes, rivers, undrained mires, peat extraction sites and cropland. Spatial data sources included CORINE land use data, soil map, lake and river shorelines, national forest inventory data, and statistical data on anthropogenic activities. Emission uncertainties were evaluated with Monte Carlo simulations. Artificial surfaces were the most emission intensive land-cover class. Lakes and rivers were about as emission intensive as arable land. Forests were the dominant land cover in the region (66%), and the C sink of the forests decreased the total emissions of the region by 72%. The region's net emissions amounted to 4.37 ± 1.43 Tg CO2-eq yr-1, corresponding to a net emission intensity 0.16 Gg CO2-eq km-2 yr-1, and estimated per capita net emissions of 5.6 Mg CO2-eq yr-1. Our landscape approach opens opportunities to examine the sensitivities of important GHG fluxes to changes in land use and climate, management actions, and mitigation of anthropogenic emissions.

7.
Global Biogeochem Cycles ; 35(1): e2020GB006719, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33519064

RESUMO

Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28-day incubations. We incubated late-summer stream water from 23 locations nested in seven northern or high-altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two-way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways.

8.
Biol Rev Camb Philos Soc ; 96(1): 89-106, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32869448

RESUMO

The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as 'meta-systems', whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locations in a broader waterscape context. Lake connectivity in the waterscape and position in the landscape determine the degree to which a lake is prone to invasion by non-native species and accumulation of harmful substances. Highly connected lakes low in the landscape accumulate nutrients and pollutants originating from ecosystems higher in the landscape. The monitoring and restoration of lake biodiversity and ecosystem services should consider the fact that a high degree of dynamism is present at local, regional and global scales. However, local and regional monitoring may be plagued by the unpredictability of ecological phenomena, hindering adaptive management of lakes. Although monitoring data are increasingly becoming available to study responses of lakes to global change, we still lack suitable integration of models for entire waterscapes. Research across disciplinary boundaries is needed to address the challenges that lakes face in the Anthropocene because they may play an increasingly important role in harbouring unique aquatic biota as well as providing ecosystem goods and services in the future.


Assuntos
Ecossistema , Lagos , Biodiversidade
9.
Sci Total Environ ; 762: 144098, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33373747

RESUMO

More reliable assessments of nutrient export to surface waters and the Baltic Sea are required to achieve good ecological status of all water bodies. Previous nutrient export estimates have recently been questioned since they did not include the long-term impacts of drainage for forestry. We made new estimates of the total nitrogen (N), total phosphorus (P) and total organic carbon (TOC) export from forests to surface waters at different spatial scales in Finland. This was done by formulating statistical equations between streamwater concentrations and climate, soil, forest management and runoff variables and spatial data on catchment characteristics. The equations were based on a large, long-term runoff and streamwater quality dataset, which was collected from 28 pristine and 61 managed boreal forest catchments located around Finland. We found that the concentrations increased with temperature sum (TS), i.e. from north to south. Nitrogen, P and TOC concentrations increased with the proportion of drained areas in the catchment; those of N and TOC also increased with the proportion of peatlands. In contrast, with the increasing concentrations of N and TOC with time, P concentrations showed a decreasing trend over the last few decades. According to our estimates, altogether 47,300 Mg of N, 1780 Mg of P and 1814 Gg of TOC is transported from forest areas to surface waters in Finland. Forest management contributes 17% of the N export, 35% of the P export and 12% of the TOC export. Our new forest management export estimates for N and P are more than two times higher than the old estimates used by the environment authorities. The differences may be explained by the long-term impact of forest drainage. The spatial results indicate that peatland forests are hotspots for N, P and TOC export, especially in the river basins draining to the Gulf of Bothnia.

10.
Ambio ; 49(11): 1722-1735, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918722

RESUMO

Nordic water bodies face multiple stressors due to human activities, generating diffuse loading and climate change. The 'green shift' towards a bio-based economy poses new demands and increased pressure on the environment. Bioeconomy-related pressures consist primarily of more intensive land management to maximise production of biomass. These activities can add considerable nutrient and sediment loads to receiving waters, posing a threat to ecosystem services and good ecological status of surface waters. The potential threats of climate change and the 'green shift' highlight the need for improved understanding of catchment-scale water and element fluxes. Here, we assess possible bioeconomy-induced pressures on Nordic catchments and associated impacts on water quality. We suggest measures to protect water quality under the 'green shift' and propose 'road maps' towards sustainable catchment management. We also identify knowledge gaps and highlight the importance of long-term monitoring data and good models to evaluate changes in water quality, improve understanding of bioeconomy-related impacts, support mitigation measures and maintain ecosystem services.


Assuntos
Ecossistema , Qualidade da Água , Mudança Climática , Previsões , Humanos , Modelos Teóricos
11.
Glob Chang Biol ; 26(3): 1432-1445, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31736162

RESUMO

Estimates of regional and global freshwater N2 O emissions have remained inaccurate due to scarce data and complexity of the multiple processes driving N2 O fluxes the focus predominantly being on summer time measurements from emission hot spots, agricultural streams. Here, we present four-season data of N2 O concentrations in the water columns of randomly selected boreal lakes covering a large variation in latitude, lake type, area, depth, water chemistry, and land use cover. Nitrate was the key driver for N2 O dynamics, explaining as much as 78% of the variation of the seasonal mean N2 O concentrations across all lakes. Nitrate concentrations varied among seasons being highest in winter and lowest in summer. Of the surface water samples, 71% were oversaturated with N2 O relative to the atmosphere. Largest oversaturation was measured in winter and lowest in summer stressing the importance to include full year N2 O measurements in annual emission estimates. Including winter data resulted in fourfold annual N2 O emission estimates compared to summer only measurements. Nutrient-rich calcareous and large humic lakes had the highest annual N2 O emissions. Our emission estimates for Finnish and boreal lakes are 0.6 and 29 Gg N2 O-N/year, respectively. The global warming potential of N2 O from lakes cannot be neglected in the boreal landscape, being 35% of that of diffusive CH4 emission in Finnish lakes.


Assuntos
Lagos , Óxido Nitroso , Dióxido de Carbono , Finlândia , Efeito Estufa , Metano
12.
Artigo em Inglês | MEDLINE | ID: mdl-30509916

RESUMO

Widespread changes in water temperatures, salinity, alkalinity and pH have been documented in inland waters in North America, which influence ion exchange, weathering rates, chemical solubility and contaminant toxicity. Increasing major ion concentrations from pollution, human-accelerated weathering and saltwater intrusion contribute to multiple ecological stressors such as changing ionic strength and pH and mobilization of chemical mixtures resulting in the freshwater salinization syndrome (FSS). Here, we explore novel combinations of elements, which are transported together as chemical mixtures containing salts, nutrients and metals as a consequence of FSS. First, we show that base cation concentrations have increased in regions primarily in North America and Europe over 100 years. Second, we show interactions between specific conductance, pH, nitrate and metals using data from greater than 20 streams located in different regions of the USA. Finally, salinization experiments and routine monitoring demonstrate mobilization of chemical mixtures of cations, metals and nutrients in 10 streams draining the Washington, DC-Baltimore, MD metropolitan regions. Freshwater salinization mobilizes diverse chemical mixtures influencing drinking water quality, infrastructure corrosion, freshwater CO2 concentrations and biodiversity. Most regulations currently target individual contaminants, but FSS requires managing mobilization of multiple chemical mixtures and interacting ecological stressors as consequences of freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Água Doce/química , Salinidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/fisiologia , Europa (Continente) , América do Norte
13.
Glob Chang Biol ; 24(8): 3692-3714, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29543363

RESUMO

Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.


Assuntos
Mudança Climática , Cadeia Alimentar , Animais , Peixes , Lagos/química , Rios/química , Estações do Ano
14.
Sci Total Environ ; 601-602: 946-958, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28582740

RESUMO

Climate change influences the volume and seasonal distribution of runoff in the northern regions. Here, we study how the seasonal variation in the runoff affects the concentrations and export of terminal electron acceptors (i.e. TEAs: NO3, Mn, Fe and SO4) in different boreal land-cover classes. Also, we make a prediction how the anticipated climate change induced increase in runoff will alter the export of TEAs in boreal catchments. Our results show that there is a strong positive relationship between runoff and the concentration of NO3-N, Mn and Fe in agricultural catchments. In peaty catchments, the relationship is poorer and the concentrations of TEAs tend to decrease with increasing runoff. In forested catchments, the correlation between runoff and TEA concentrations was weak. In most catchments, the concentrations of SO4 decrease with an increase in runoff regardless of the land cover or season. The wet years export much higher amounts of TEAs than the dry years. In southern agricultural catchments, the wet years increased the TEA export for both spring (January-May) and autumn (September-December) periods, while in the peaty and forested catchments in eastern and northern Finland the export only increased in the autumn. Our predictions for the year 2099 indicate that the export of TEAs will increase especially from agricultural but also from forested catchments. Additionally, the predictions show an increase in the export of Fe and SO4 for all the catchments for the autumn. Thus, the climate induced change in the runoff regime is likely to alter the exported amount of TEAs and the timing of the export downstream. The changes in the amounts and timing in the export of TEAs have a potential to modify the mineralization pathways in the receiving water bodies, with feedbacks in the cycling of C, nutrients and metals in aquatic ecosystems.

15.
Sci Rep ; 7: 42102, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186141

RESUMO

Dissolved organic matter (DOM) strongly affects water quality within boreal forest ecosystems. However, how the quality of DOM itself changes spatially is not well understood. In this study, to examine how the diversity of DOM molecules varies in water moving through a boreal forest, the number of DOM molecules in different water samples, i.e., rainwater, throughfall, soil water, groundwater, and stream water was determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in Norway spruce and Scots pine stands in eastern Finland during May and June 2010. The number of molecular compounds identified by FT-ICR MS (molecular diversity) ranged from 865 to 2,194, revealing large DOM molecular diversity in the water samples. Additionally, some of the molecular compounds were shared between different water samples. The DOM molecular diversity linearly correlated with the number of low-biodegradable molecules, such as, lignin-like molecules (lignins), but not with dissolved organic carbon concentration. The number of lignins shared between different sampling locations was larger than that of any other biomolecular class. Our results suggest that low-biodegradable molecules, especially lignins, regulate spatial variations in DOM molecular diversity in boreal forests.

16.
Sci Total Environ ; 557-558: 51-7, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994793

RESUMO

Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78tCO2eqkm(-2) and 2.8tCO2eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250tCO2eqkm(-2) and 9.2tCO2eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions.

17.
Sci Total Environ ; 508: 145-54, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25555556

RESUMO

Climate change scenarios for northern boreal regions indicate that there will be increasing temperature and precipitation, and the changes are expected to be larger in winter than in summer. These precipitation and discharge patterns, coupled with shorter ice cover/soil frost periods in the future would be expected to contribute significantly to changing flow paths of organic matter over a range of land use patterns. In order to study the impact of climate change on the seasonality of organic matter export we compared total organic carbon (TOC) and total organic nitrogen (TON) concentrations and export, during different seasons and climatically different years, over 12 years for 30 Finnish rivers separated into forest, agriculture and peat dominated catchments. The mean monthly TOC concentrations were highest during autumn and there was also a peak in May during the highest flow period. The mean monthly concentrations of TON were lowest during winter, increased in spring and remaining high throughout summer and autumn. The TOC/TON ratios were lowest during summer and highest during winter, and in all seasons the ratios were lowest in catchments with a high proportion of agricultural land and highest in peat-dominated catchments. The seasonality of TOC and TON exports reflected geographical location, hydrology and land use patterns. Most of the TOC and TON were transported during the high flow following the spring snowmelt and during rainfall in autumn. In all catchments the relative importance of the spring snowmelt decreased in wet and warm years. However, in peat-dominated catchments the proportion of spring period was over 30% of the annual export even in these wet and warm years, while in other catchments the proportion was about 20%. This might be linked to the northern location of the peat-dominated catchments and the permanent snow cover and spring snowmelt, even in warm years.


Assuntos
Carbono/análise , Mudança Climática , Clima , Nitrogênio/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Movimentos da Água
18.
Glob Chang Biol ; 20(4): 1225-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501106

RESUMO

Here, we use a unique long-term data set on total organic carbon (TOC) fluxes, its climatic drivers and effects of land management from a large boreal watershed in northern Finland. TOC and runoff have been monitored at several sites in the Simojoki watershed (3160 km(2) ) since the early 1960s. Annual TOC fluxes have increased significantly together with increased inter-annual variability. Acid deposition in the area has been low and has not significantly influenced losses of TOC. Forest management, including ditching and clear felling, had a minor influence on TOC fluxes - seasonal and long-term patterns in TOC were controlled primarily by changes in soil frost, seasonal precipitation, drought, and runoff. Deeper soil frost led to lower spring TOC concentrations in the river. Summer TOC concentrations were positively correlated with precipitation and soil moisture not temperature. There is some indication that drought conditions led to elevated TOC concentrations and fluxes in subsequent years (1998-2000). A sensitivity analysis of the INCA-C model results showed the importance of landscape position, land-use type, and soil temperature as controls of modeled TOC concentrations. Model predictions were not sensitive to forest management. Our results are contradictory to some earlier plot-scale and small catchment studies that have shown more profound forest management impacts on TOC fluxes. This shows the importance of scale when assessing the mechanisms controlling TOC fluxes and concentrations. The results highlight the value of long-term multiple data sets to better understand ecosystem response to land management, climate change and extremes in northern ecosystems.


Assuntos
Ciclo do Carbono , Monitoramento Ambiental , Agricultura Florestal , Modelos Teóricos , Calibragem , Carbono/análise , Clima , Secas , Finlândia , Inundações , Estações do Ano , Temperatura
19.
Nature ; 503(7476): 355-9, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256802

RESUMO

Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8(+0.25)(-0.25) petagrams of carbon (Pg C) per year from streams and rivers and 0.32(+0.52)(-0.26) Pg C yr(-1) from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr(-1) is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.


Assuntos
Dióxido de Carbono/análise , Água Doce/química , Atmosfera/química , Ciclo do Carbono , Gases/análise , Geografia , Internacionalidade , Rios/química
20.
Sci Total Environ ; 463-464: 683-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23850658

RESUMO

Observations of increased water colour have been made in lakes and rivers all across the northern mid-latitudes of Europe and North America, particularly during the last 10-20 yr. This water browning or brownification has been attributed to the increased organic carbon concentrations due to climate change and decreased acid atmospheric deposition. Given that iron (Fe) may also increase water colour, the contribution of Fe to water brownification has received small attention. Our aim was to study the temporal trends of Fe in forested headwater catchments in eastern Finland, where an increasing air temperature and total organic carbon (TOC) trend had been observed in an earlier study. We found a statistically significant increasing trend also in stream water Fe concentrations and a strong correlation between the trends of TOC and Fe. The average increase in TOC and Fe concentrations between 1995 and 2006 was 0.5 mg l(-1) yr(-1) (2.5%), and 34.6 µ gl(-1) yr(-1) (3.5%), respectively. These results indicate that the increased water colour or brownification in Northern Europe may not only be due to increased concentrations of organic matter but also increased concentrations of Fe. The change in precipitation and temperature conditions, particularly during late autumn and early winter periods, appeared to be the main environmental factor behind increasing Fe trends. The strong correlation between the trends of Fe and TOC indicated that the increased Fe-organic matter complexation is the mechanism behind increasing Fe trends, but further research is needed to assess the chemical forms of increased Fe that coupled with increased TOC concentrations would enhance water brownification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...